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ABSTRACT

The Fibonacci entry point for the integer m is the index of the earliest Fibonacci number where m
appear as a factor. We prove that the upper bound of Fibonacci entry points is 2m.
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1 Introduction

The Fibonacci numbers have been studied for centuries, dating back to 450 BC, India. In 1202 Leonardo of Pisa
introduced the Fibonacci numbers to the western world in the voluminous book ’Liber Abacci’. The same book where
he posed the famous rabbit problem [1].

A Fibonacci number is the sum of the two previous, forming the sequence A0000451, 0,1,1,2,3,5,8,13,21,34,55,89. . . The
Fibonacci numbers have many interesting properties of which we study the Fibonacci entry points2.

An entry point is the earliest index where an integer enters the Fibonacci sequence. For example 3 enters as the 4-th
Fibonacci number, hence 3 has the entry point 4. Also, 7 appears at earliest as a factor of the 8-th Fibonacci number, 21,
therefore 7 has the entry point 8.

In 1961 Vorob’ev showed that the upper bound entry point of m is less than m2 [1]. In section 3 we prove that the entry
point of m is less or equal to 2m with equality if and only if m = 6 · 5e. To achieve this we create an upper bound
function which allows us to narrow down candidates of m to integers with one or two prime factors. We also note that
our upper bound can be expressed as the Dedekind psi function over the number of unitary divisors of m.

In section 4 we shortly present an alternative proof of a weaker upper bound.

Edit: Apparently, in 1975 J. Salle proved that the upper bound is less or equal to 2m [11]. This upper bound was further
sharpened in 2013 by D. Marques [12]. The author was not aware of those results when writing this article. Our result
is very similar to the results of Marques but hopefully we contribute with a slightly different perspective.

2 Definitions and lemmas

In this section we list some of our definitions and lemmas.

2.1 Definitions

Throughout the article m and e are arbitrary integers and p is prime.
Definition 1. Let F be the Fibonacci numbers such F0 = 0, F1 = 1 and Fm = Fm−1 +Fm−2.
Definition 2. Let z(m) = k denote the Fibonacci entry point, such that k is the smallest integer such that m|Fk.

1All A-number are sequences to be found at https://oeis.org/AXXXXXX [3].
2Sometimes referred to as ’order of appearance’ or ’rank of apparition’.

https://oeis.org/A000045
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Definition 3. Let ẑ(m) denote our upper bound of z(m).

Definition 4. Let the upper bound ratio be R(m) = ẑ(m)
m .

2.2 Lemmas

Lemma 5. If p 6= 5 then p|Fp−1 or p|Fp+1 .

Lemma 6. If p = 5 then p|Fp.

Lemma 7. z(pe11 · · · penn ) = lcm(z(pe11 ), . . . , z(penn )).

Lemma 8. If a|b then z(a)| z(b).
Lemma 9. z(pe) = pe−1 z(p) if p > 2 and z(p) 6= z(p2).

Lemma 10. z(2e) = 3 · 2e−2 for e > 2.

Lemma 11. z(5e) = 5e.

Lemma 12. z(Fm) = m for m > 1.

Most of the lemmas are standard results, lemma 5 and lemma 6 can be found in Williams [4]. Robinson proved lemma 7
to lemma 10 in [5] and Marques provided lemma 11 in [6]. Since Fm is strictly increasing for m > 1 we can conclude
that the entry point of Fk must be k which proves lemma 12.

2.3 The least common multiple

The least common multiple of a and b is the least integer that is divisible by both a and b. For example the least common
multiple of 3 and 7 is 21 since it is the least integer that both a and b divides. Another example is lcm(4, 6) = 12. The
least common multiple is related to the greatest common divisor by the identity lcm(a, b) = |ab|

gcd(a,b) [7].

The least common multiple is also well defined for multiple arguments, lcm(m1, . . . ,mn), and the idea is the same.
One way to evaluate the least common multiple is to factorize all terms and take the product of prime factors with the
highest powers [7].

Definition 13. lcm(m1, . . . ,mn) =
∏
p|m

pmax(ep) where m = 2e23e35e5 · · · =
∏
pep .

For example to evaluate lcm(6, 8, 45) we first factorize each term 6 = 2 · 3, 8 = 23 and 45 = 32 · 5 then for each prime
factor, 2, 3 and 5 we take the product of the factors with the highest powers lcm(6, 8, 45) = 23 · 32 · 5 = 360.

From the definition of lcm, note that if all mi are coprime, then the least common multiple is lcm(mi) =
∏
mi.

3 The upper bound of the Fibonacci entry points

In this section we prove our main result. However, first each subsection investigates the upper bound for a subset of m.
In 3.1 we examine the highest observed upper bound. Because of lemma 6 we separately investigate 5 in 3.2. In 3.3 we
consider single primes, then in 3.4 we find an upper bound for an arbitrary positive integer. In 3.5 we prove the main
result. Finally in 3.6 we show a relationship between our upper bound and the Dedekind psi function.

3.1 The observed upper bound and ratios

The observed upper bound of z(m) is 2m, for example the entry point of 6 is 12 since F12 = 144 is the first Fibonacci
number divisible by 12. We can therefore say z(6) = r · 6 = 12 where the ratio is r = 2. Another entry point with
r = 2 is z(30) = 60. An example of a ratio less than 2 is the ratio of 7, which is z(7)

7 = 8
7 .

The upper bound ratio R (definition 4) is central in the following subsections. Analogous to the ratio described in the
previous paragraph, R(m) is the ratio between an upper bound and m.

3.2 The upper bound of 5

Let us examine the special prime 5. It’s special because p = 5 is the only prime such p|Fp.
Lemma 14. z(5em) ≤ 5e z(m).
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Proof. By lemma 11 we know that z(5e) = 5e, then by lemma 7, z(5em) = lcm(z(5e), z(m)) = lcm(5e, z(m)). If
gcd(5e, z(m)) = 1 we get the maximum possible least common multiple and conclude that z(5em) has to be less or
equal to 5e z(m).

Corollary 15. R(5em) = R(m).

Proof. By lemma 14 we have and the definition of R we get R(5em) = 5e z(m)
5em = R(m).

Corollary 16. R(5e) = 1.

Proof. In corollary 15 we let m = 1 and then we get R(5e) = 5e z(1)
5e = 1.

3.3 The upper bound of primes

Here we investigate the upper bound of the entry points for primes. Starting with the established upper bound for z(p)

Lemma 17. z(p) ≤ p+ 1 for all primes p.

Proof. If p 6= 5 then, by lemma 5, we have p|Fp−1 or p|Fp+1. By lemma 8 we apply z on both sides and get
z(p)| z(Fp−1) and z(p)| z(Fp+1). By lemma 12 we get z(p)|p− 1 and z(p)|p+ 1. As a consequence z(p) ≤ p+ 1. By
inspection, z(5) = 5 which is within the bound.

Let’s expand this by introducing an exponent to the prime z(pe)

Lemma 18. z(pe) ≤ pe−1(p+ 1) for all primes p.

Proof. By lemma 9 we have z(pe) = pe−1 z(p) for all odd primes. Then by lemma 17 we can replace z(p) with p+ 1
and arrive at z(pe) ≤ pe−1(p + 1). For the even prime 2 we see by inspection that z(2) = 3, z(22) = 6, z(23) = 6
and then by lemma 10 we have z(2e) = 3 · 2e−2. By lemma 11, z(5e) = 5e. All of which are within the bound
pe−1(p+ 1).

Corollary 19. R(pe) = R(p) = 1 + 1
p for all primes p.

Proof. By lemma 18 and the definition of R we get R(pe) = pe−1(p+1)
pe = p+1

p = 1 + 1
p = R(p).

Corollary 20. R(pe) ≤ 3
2 for all primes p.

Proof. Since limp→∞R(pe) = 1 + 1
p = 1 we see p = 2 maximizes R(pe) and we get R(2) = 3

2 .

3.4 Upper bound of Fibonacci entry points

Let us leave the comfort zone where m = p and consider the upper bound of composite numbers. To build up intuition
we first examine m = pq where p and q are distinct odd primes other than 5.

By lemma 6 z(pq) = lcm(z(p), z(q)). To get the upper bound we maximize this function by carefully selecting p and q
such their entry points are at p+ 1 and q + 1. Then z(pq) ≤ lcm(p+ 1, q + 1), we make the observation that p± 1
is even for all odd primes. Hence both p+ 1 and q + 1 have a factor of 2. Because both terms of the least common
multiple contains a factor of 2 we can immediately conclude that z(pq) ≤ (p+1)(q+1)

2 . Sometimes it’s easier to see this
by looking at the gcd equivalent, lcm(p+ 1, q + 1) = (p+1)(q+1)

gcd(p+1,q+1) where the denominator is always greater or equal
to 2. Let us generalize this line of reasoning.

Definition 21. c(m) =

{
2 if 2 is a square free factor of a composite m
1 otherwise

We now formulate our first theorem, an upper bound of the Fibonacci entry points, ẑ(m)

Theorem 22. z(m) ≤ c(m)
5e

n∏
pei−1i (pi + 1)

2n−1
= ẑ(m) where m = 5e · 2e13e27e3 · · · penn .

3
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Note that we handle factors of 5 in m separately (due to corollary 15).

Proof. By lemma 7 we have z(m) = lcm(z(pe11 ), . . . , z(penn )).

To get an upper bound we maximize each term of lcm by invoking lemma 18. Then we have z(m) ≤ lcm(pe1−11 (p1 +
1), . . . , pen−1n (pn + 1)). From here we get an upper bound of the least common multiple by assuming that each term is
coprime and arrive at z(m) ≤

∏n
pei−1i (p+ 1).

When every factor of m is odd (pi > 2) then every maximization term, pe−1i (pi + 1), is even (because pi + 1 is even).
We recall from definition 13 that only the factor with the highest power is accounted in the least common multiple. This

means that n− 1 factors of 2 are disregarded and we can state z(m) ≤
∏n p

ei−1

i (pi+1)

2n−1 . This completes the proof for all
odd integers not divisible by 5.

Because 2 is the only even prime we get a special case for even composite numbers. The maximization term of 2 is odd,
2 + 1 = 3. Because 3 is not necessarily a factor of the other even maximization terms, we can not remove it from the
upper bound as we did with odd primes (the division by 2n−1), to compensate we multiply the nominator by a factor of
2. The compensation is done via c(m).

Finally we see that maximization terms for 2e when e > 1 contains a factor of 2. By inspection z(22) ≤ 2 · (2 + 1) and
for e > 2 we have z(2e) ≤ 2e−2 · 3 (lemma 10). Therefore we only compensate whenever a square free 2 is a factor of
composite m. This complets the proof for all integers not divisible by 5.

By lemma 14 we know that z(5em) = 5e z(m), which corresponds to the separately handled 5e in theorem 22. This
completes the proof for all integers.

Corollary 23. All ẑ(m) are integer values.

Proof. From the proof of theorem 22 we know that ẑ(m) is always an integer, since there are always at least 2n−1
factors of 2 in the nominator.

Corollary 24. ẑ(m) is even for m 6= 2.

Proof. From the proof of theorem 22 we get n factor of 2 in the nominator, except when m = 2, when we have n− 1
factors of 2. The latter is the only case when denominator of ẑ(m) cancel all factors of 2, making it the only odd
ẑ(m).

Theorem 25. R(m) = c(m)

n∏
(1 +

1

pi
)

2n−1
where m = 5e · 2e13e27e3 · · · penn .

Proof. By theorem 22 and the definition of R we get R(m)
c(m) =

5e
∏n p

ei−1

i (pi+1)

2n−15e
∏n p

ei
i

=
∏n(pi+1)
2n−1

∏
pi

=
∏n(1+ 1

pi
)

2n−1 .

Corollary 26. R(m) ≤ 3n

4n−1 where m = 5e · 2e13e27e3 · · · penn .

Proof. Since the nominator of R is maximized by the lowest possible pi and limp→∞ 1 + 1
pi

= 1 we can assume, by
setting all pi = 2 that

∏n
(1 + 1

p ) ≤
3
2

n. Further we assume that c(m) = 2 for all m. Then we get that R(m) must be

less or equal to c(m)
3
2
n

2n−1 = 2 · 2·3
n

4n = 3n

4n−1 .

From corollary 26 we get a rough idea of how R behave, we assume that every factor has c(pi) = 2 and the same ratio
as 2, which is the highest possible for single primes, R(pi) = 3

2 . Although this is an oversized upper estimation we can
draw the following conclusion

Corollary 27. The maximum R(m) can be found among m with either one or two factors, not counting 5.

Proof. By inspection of the strictly decreasing function from corollary 26, f(n) = 3n

4n−1 , we get f(1) = 3, f(2) = 9
4

and f(3) = 27
16 . Since f(3) is less than 2 we can be sure that all m with three or more distinct factors have a ratio less

than 2. We note that f(n) is unaffected by factors of 5 (by corollary 26). Since the observed upper bound is 2 we do not
need to consider composites with more than two distinct factors (not counting 5) to find the maximum R.

4
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3.5 The maximum upper bound

Next we state and prove our main result
Theorem 28. z(m) ≤ 2m for m ≥ 1.

Proof. We investigate all possible candidates of m that can maximize R(m).

For m = 1, by inspection we have z(1) = 1, which is has a ratio of 1.

For m = pe we know by corollary 20 that R(pe) ≤ 3
2 .

For m = 5e we know by corollary 15 that 5e doesn’t affect R so we do not consider it further. Next we consider all m
with two distinct factors (except 5). In the nominator of R we have the product

∏n
(1 + 1

pi
) to maximize it we select

the two lowest possible pi
For composites m = 203e27e3 · · · we maximize R by R(3e2 · 7e3) = 16

21 .

For composites m = 2e13e27e3 · · · where e1 > 1 we maximize R by R(2e1 · 3e2) = 2
3 .

For composites m = 213e27e3 · · · we maximize R by R(2 · 3e2) = 2.

We have examined all candidate m with one and two factors and found maximum upper bound at R(2 · 3e) = 2. By
corollary 27 every m with three or more distinct factors have an upper bound ratio less than 2. Therefore we can be
sure that R(m) ≤ 2 for all m ≥ 1. Since z(m)

m ≤ R(m) the proof is complete.

Corollary 29. z(m) = 2m if and only if m = 6 · 5e.

Proof. In the proof of theorem 28 we showed that m = 2 · 3e has an upper bound ratio of 2.

Since z(2 · 3e) = lcm(z(2), z(3e) = lcm(3, 3e−1 z(3)), we note that for all e > 1 both terms have a factor of 3. By
definition 13 only the of highest factor of 3 is accounted, which allows us to adjust the upper bound by removing a
factor of 3. When e > 1 we get an adjusted upper bound ratio of R(2·3e)

3 = 2
3 . Therefore R(2 · 3e) = 2 if and only if

e = 1.

Recall that R(m5e) = R(m) by corollary 15, therefore we conclude that all R(6 · 5e) = 2.

3.6 Relationship to the Dedekind psi function

Here we shortly remark that our upper bound can be expressed as a function of the ratio of the Dedekind psi function
(A001615) over the number of unitary divisors (A034444) of m.
Definition 30. Let the Dedekind psi be denoted by ψ(m) = m

∏n
1 + 1

pi
=
∏n

pei−1(pi + 1).

Note that n is the number of distinct divisors, commonly denoted by omega, ω(m) (A001221). We then get the number
of unitary divisors of m by 2ω(m). For simplicity we restrict our expression to odd m not divisible by 5,

Theorem 31. ẑψ(m) =
2ψ(m)

2ω(m)
for all odd m not divisible by 5.

Proof. From theorem 22 we have ẑ(m) =
∏n pei−1(p+1)

2n−1 for odd m not divisible by 5. We substitute the product in the
nominator by the Dedekind psi function. Then we multiply the nominator by 2 to get 2n in the denominator and replace
n by ω(m).

4 An alternative proof of a weaker upper bound

The period length of Fn mod m is often referred to as the Pisano period, π(m). For example Fn mod 4 = A079343:
0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,. . . for which the period length is 6. Hence π(4) = 6.

In 1960 Wall showed that π(m) < m2 [8]. In 1992 Peter Freyd challenged the readers of the American Mathematical
Monthly (E3410, March 92) to prove that π(m) ≤ 6m for all m. K.S. Brown found a proof and additional showed that
π(m) = 6m if and only if m = 2 · 5e [9].

The number of zeros in a Pisano period is denoted a(m). The period above (A079343) has one zero per period, so
a(4) = 1. The only possible values of a(m) is 1, 2 or 4 [5].

5
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Since z(m) and π(m) are related by π(m) = z(m) a(m) [5] we can apply the upper bound of π(m) to z(m).
Theorem 32. z(m) ≤ 6m.

Proof. Since z(m) = π(m)
a(m) and a(m) ≥ 1 it follows that z(m) ≤ π(m). Since the upper bound of π(m) is 6m we can

conclude that z(m) also must be less or equal to 6m.

We encourage the reader to improve theorem 32 further by for example investigating the behaviour of a(m).
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Function table

m z(m) ẑ(m) z(m)
m R(m) = ẑ(m)

m
1 1 1 1. 1.
2 3 3 1.5 1.5
3 4 4 1.33333 1.33333
4 6 6 1.5 1.5
5 5 5 1. 1.
6 12 12 2. 2.
7 8 8 1.14286 1.14286
8 6 12 0.75 1.5
9 12 12 1.33333 1.33333
10 15 15 1.5 1.5
11 10 12 0.909091 1.09091
12 12 12 1. 1.
13 7 14 0.538462 1.07692
14 24 24 1.71429 1.71429
15 20 20 1.33333 1.33333
16 12 24 0.75 1.5
17 9 18 0.529412 1.05882
18 12 36 0.666667 2.
19 18 20 0.947368 1.05263
20 30 30 1.5 1.5
21 8 16 0.380952 0.761905
22 30 36 1.36364 1.63636
23 24 24 1.04348 1.04348
24 12 24 0.5 1.
25 25 25 1. 1.
26 21 42 0.807692 1.61538
27 36 36 1.33333 1.33333
28 24 24 0.857143 0.857143
29 14 30 0.482759 1.03448
30 60 60 2. 2.
31 30 32 0.967742 1.03226
32 24 48 0.75 1.5
33 20 24 0.606061 0.727273
34 9 54 0.264706 1.58824
35 40 40 1.14286 1.14286
36 12 36 0.333333 1.
37 19 38 0.513514 1.02703
38 18 60 0.473684 1.57895
39 28 28 0.717949 0.717949
40 30 60 0.75 1.5
41 20 42 0.487805 1.02439
42 24 48 0.571429 1.14286
43 44 44 1.02326 1.02326
44 30 36 0.681818 0.818182
45 60 60 1.33333 1.33333
46 24 72 0.521739 1.56522
47 16 48 0.340426 1.02128
48 12 48 0.25 1.
49 56 56 1.14286 1.14286
50 75 75 1.5 1.5
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