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Abstract
The classical Kolakoski sequence self-encodes runs of 1s and 2s. It is unknown
whether limiting symbol densities exist. We give a short recurrence that yields the
run number at every position and extend it to all Kolakoski-(p,2p) sequences. This
viewpoint ties the elusive odd-p cases (including p = 1) to the even-p variants, where
symbol densities are known.

1 Introduction

2 Introduction

The Kolakoski sequence [1, 2], named after the mathematician William Kolakoski, is an
infinite sequence that self-encodes its run lengths. It was first discussed by Oldenburger in
1939 [3] before being popularized by Kolakoski. A run is a maximal streak of equal terms.
The On-Line Encyclopedia of Integer Sequences [4] defines the Kolakoski sequence, which
we denote by k(n), as follows: “...k(n) is the length of n-th run ...”.

k(n) = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,...) = A000002

Example 1. The first six runs in the Kolakoski sequence are (1), (2,2), (1,1), (2), (1), and
(2,2). According to the definition of the sequence, k(3) = 2 indicates that the third run has
a length of two: (1, 1). Similarly, for £(5) = 1, the fifth run consists of a single element: (1).

There are many interesting questions regarding the properties of the Kolakoski sequence.
For instance, it remains unclear whether the sequence contains asymptotically equal numbers
of 1s and 2s, as conjectured by Keane [11]. Empirical evidence, for example Nilsson [7],
supports this possibility. Previous studies, including [5, 6], have found recurrence relations
for k(n) and its companion sequences. In this study, we introduce a recurrence for its run
number. Then we generalize it and show how it connects to all Kolakoski-(p, 2p) sequences.

2.1 Constructing the Kolakoski sequence

To construct the Kolakoski sequence, we use what we call the driving term: at each step, the
driving term k(n) specifies the length of the next run to append. We begin with the initial
terms (1,2,2) and set n = 3 (marking the driving term with *), appending k(n) copies of
the current symbol (highlighted in bold):


https://oeis.org/A000002

1. At k(3

2, the third run has length two: append two 1s. (1,2,%2,1,1)

1, the fourth run has length one: append one 2. (1,2,2,%1,1,2)

3. At k(5

(3)
2. At k(4)

(5) = 1, the fifth run has length one: append one 1. (1,2,2,1,%1,2,1)

(6)

4. At k(6) = 2, the sixth run has length two: append two 2s. (1,2,2,1,1,%2,1,2,2)

d. ...

Note that in each step above, we append a complete run. Consequently, for every n (the
index to the driving term in k), the appended symbol alternates by run. This construction
algorithm leads us to the equivalent mapping that Culik 1T and Lepistd found [8]:

{1#—)1,2#—)11, if n is odd; 1)

12, 222 if nis even.

3 The run number in the Kolakoski sequence

We complement the Kolakoski sequence by creating a sequence that enumerates the runs
r(n). That is, every time terms in k£ change symbol, we increment the run number. The
construction of r is analogous to k, but instead of appending the symbols, we append the
run number.

k(n) = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,...) = A000002,
r(n) = (1,2,2,3,3,4,5,6,6,7,8,8,9,9,...) = A156253.

The OEIS lists the sequence r(n) as A156253. Because we alternate between odd and
even numbers for every appended run in both k and r, we can recover k from r:

k(n) {1, if r(n) is odd; )

if r(n) is even.

This relation is also noted by Benoit Cloitre in A000002.

3.1 A recursive formula for the Kolakoski run numbers

We now express a recursive formula for r(n). Recall the mapping algorithm (1) for k(n),
when we encounter a '1’, we append exactly one new symbol, whereas each 2’ appends
exactly two identical symbols. Hence each ’2’ pauses the growth of r(n) for one step and
therefore we can express the run number as the maximum number of opportunities to start
a run minus the number of pauses. We now formalize the recurrence.
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Table 1: Row 2 lists the Kolakoski sequence k(n). Underlined values in row 3 are “extra”
symbols: positions where k(r(n)) = 2 have produced a duplicate symbol, so the run number
r(n) does not increase.

Theorem 2. Let r(n) be the number of runs among the first n terms of the Kolakoski
sequence, with r(1) = 1. Define

e(i) = #{1<j <r(i):r(j) is even}.

Recall from (2)
k(j) =2 <= r(j) is even,

so e(i) also counts the number of 2°s among the first r(i) terms of k.
Then for all n > 2,
r(n) = n — e(n—1). (3)

Proof. Among the first n symbols of k, there are n opportunities to begin a new run, but
each time the driving term is a 2 (equivalently for even run numbers in 7 by (2)) it appends
two identical symbols and thus contributes one “extra” symbol that does not start a run.
Since there are e(n — 1) such events among the first 7(n — 1) runs, exactly e(n — 1) of the n
positions do not start a new run. Hence

r(n) = n — e(n—1),

which proves the claim. O

3.2 A generalization for Kolakoski-(p,2p)

There are variants of the Kolakoski sequence, some of the form Kolakoski-(p, ¢) where p and
¢ indicate the symbols. When p and ¢ have equal parity (both are odd or both are even)
the sequence shows more structure [12]. For example, Kolakoski-(1,2) (A000002) still has
an unknown density of 1’s and 2’s. By contrast, we do know the density of 2s and 4s in
Kolakoski-(2,4) (A071928). Jeffrey Shallit comments on the OEIS entry that Kolakoski-(2,4)
can be generated by a morphism. Using the theorem-proving software Walnut [9], he proves
that A071928(n)/2 = A157129(n) and Y ,_, A157129(k) = 37” +0O(1).

We now extend the formula 7(n) by incorporating, p, such that r,(n) corresponds to
the run numbers for Kolakoski-(p,2p). For p = 1 we get the run numbers to the classical
Kolakoski-(1,2) sequence, for p = 2 we get the run numbers for Kolakoski-(2,4) sequence.
For p = 3 we get the run numbers to Kolakoski-(3,6), and so on. The proof is analogous to
the case for p = 1.
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Table 2: Row 2 lists the Kolakoski-(2,4) sequence, ks 4(n). Underlined values in row 3 are
“extra” symbols: positions where kg 4(72(n)) = 4 have produced two “extra” symbols.

Since we use the same construction algorithm for all Kolakoski-(p, 2p) sequences we gen-
eralize (2) to
p, ifr,(n)is odd;
kipap(n) = L (4)
2p, if ry(n) is even.

Theorem 3. Fizx an integer p > 1. Let r,(n) be the number of runs in the first n symbols
of the Kolakoski sequence whose symbols are p and 2p, with r,(n) =1 for 1 <n < p. Define

ep(i) = #{1 <7 <rp(i) 1 1p(j) is even},

Recall from (4)
kpop(j) = 2p <= 1p(J) is even,

so that e,(i) counts the number of 2p-runs among the first r,(i) runs.

Then for every n > p,
n

) = [2] = en-p). (5)

p

Proof. The minimum length of each run is p. Hence among the first n symbols there are
[n/p] potential run-starts.

Whenever the driving term is 2p (equivalently for even run numbers in r, by (4)) the
appended run has length 2p. Its second half therefore prevents one of the [n/p] potential
run-starts from occurring. Conversely, a p-run occupies only a single run of length p and
creates no such suppressed start.

Among the runs that begin no later than the first r,(n —p) runs, exactly e, (n— p) are 2p-
runs, and each of them accounts for one lost run-start inside the first n symbols. Subtracting
these losses from the [n/p] potential run starts gives

) = 7] = aln-2),

which proves the claim. O

4 Conclusion

We have shown that the seemingly intricate pattern of runs in the Kolakoski sequence admits
a remarkably simple description: subtracting the number of “extra” symbols that even run

4



numbers generate from the potential run starts yields the exact run index at every position.
The same idea extends to all Kolakoski-(p,2p) sequences and therefore bridges the gap
between the classical, still mysterious case p = 1 and the even-p cases which we understand
better. Several avenues remain open, notably extending the recurrence to arbitrary (p,q)
variants and formalizing the self-regulating dynamics of r(n).
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